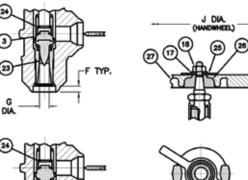


World Class Clampseal® Throttling Valves

- Replaceable Seat/Venturi
- Low Velocity Across Main Seat
- Precise Flow Control
- Pressure Seal Bonnet

Conval Clampseal® Throttling Valves are designed for a wide range of severe service applications requiring repeatable flow control and dependable shutoff.


STANDARD SIZES

1/2" through 4"

PRESSURE RATING ASME Class 900 through 3045

STANDARD MATERIALS Carbon Steel SA105 Forged Alloy Steel 182 F22 Other materials available upon request

OPTIONAL ACCESSORIES Actuators - Air, Motor, Hydraulic

SECTION

DESIGN FEATURES

Replaceable 440C Stainless Steel Seat/Venturi

The venturi is an integral part of the removable seat. It is readily changed in-line should different flow characteristics be required or replacement be necessary from excessive wear. The orifice is sized to keep fluid velocity across the seat below damaging levels. The exit orifice angle is designed to minimize downstream piping erosion and noise. Several erosion-resistant materials are available. Consult factory.

Position Indicator

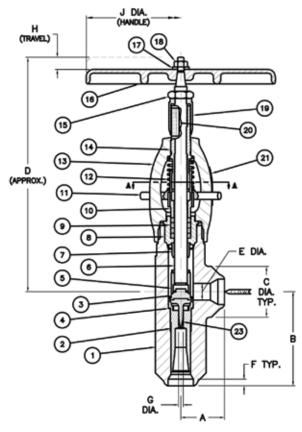
The position indicator is easy to read and an accurate indication of valve stem position.

Axially-loaded Packing System

The packing is uniformly axially loaded. The bonnet cartridge packing chamber with a secure leakproof bonnet allows rapid access to valve trim for ease of inspection and maintenance.

Mated Stem Assembly

The stem assembly is mated to the orifice for proper control. Like the orifice seat assembly, it is readily changeable should different flow characteristics be required or excessive erosion occur.


Pressure Seal Bonnet

A secure, leakproof bonnet allows rapid access to valve trim for inspection and maintenance. The pressure boundary is sealed at the smallest diameter possible to ensure maximum sealing capability.

Two-Year Warranty

Conval is committed to unsurpassed quality. We are so confident of the quality of our product, that we offer a two-year warranty.

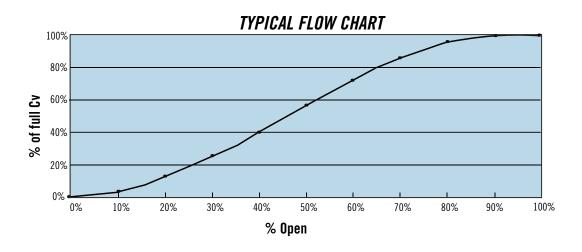
Clampseal® Throttling Valves is a registered trademark of Conval, Inc.

LIST OF MATERIALS

NO.	NAME	QTY	MATERIAL	SPECIFICATIONS					
1	BODY	1	CARBON STEEL	ASME SA-105					
2	SEAT/ORIFICE	1	STAINLESS	ASTM A-276-440C					
3	NEEDLE DISC	1	STELLITE NO. 6	AMS 5387					
4	0-RING	1	STAINLESS	MFR. STD.					
5	RETAINER	1	STAINLESS	ASTM A582-416					
6	STEM	1	STAINLESS	ASTM A582-416					
7	BACKSEAT	1	COBALT ALLOY NO. 21	ASTM A732-GR21					
8	BONNET	1	STAINLESS	ASME SA479-410					
9	PACKING SET	2	END/WIPER RINGS	BRAIDED CARBON YARN					
		2	DIE FORMED RINGS	FLEXIBLE GRAPHITE					
10	GLAND	1	STAINLESS	ATSTM A582-416					
11	INTEGRAL GLAND WR	1	CAST STAINLESS	MFR. STD.					
12	I.G.W. SPRING	1	STAINLESS	MFR. STD.					
13	YOKE	1	*FORGED ALLOY STEEL	ASME SA-105					
14	YOKE BUSHING	1	ALUMINUM BRONZE	ASME SB-150 UNS C64200					
15	CHECK NUT	1	STEEL	MFR. STD.					
16	HANDLE	1	MALLEABLE/DUCTILE IRON	MFR. STD.					
17	WASHER	1	STEEL	MFR. STD.					
18	LOCKNUT	1	STEEL	MFR. STD.					
19	INDICATOR SLEEVE	1	STEEL	MFR. STD.					
20	INDICATOR TAG	1	ALUMINUM	MFR. STD.					
21	I.D. PLATE	1	STAINLESS	MFR. STD.					
22	CLAMPBOLT	1	STAINLESS	MFR. STD.					
23	NEEDLE	1	STAINESS	ASTM A-276-440C					
24	SPLIT RING	2	STAINLESS	ASME SA479-316					
25	FLAT WASHER	1	STAINLESS	MFR. STD.					
26	ADAPTER IMPACT*	1	MALLEABLE/DUCTILE IRON	MFR. STD.					
27	HANDWHEEL*	1	MALLEABLE/DUCTILE IRON	MFR. STD.					
28	NEEDLE DISC	1	STAINLESS	ASTM A-276-440C					

PRESSURE Class Size Pipe В C D Ε F Η J Wgt A Code Size 5E 1/2 2 5/16 4 2 5/16 10 7/32 11/16 1/2 5/8 13 8 5E 2 5/16 10 7/32 3/4 4 2 5/16 11/16 1/25/8 8 13 NOMINAL 5E 1 2 5/16 4 2 5/16 10 7/32 11/16 1/2 5/8 8 13 59 900 7G 2 3/4 3 1/4 14 17/32 1 1/16 1/2 1 1/16 26 1 4 1/4 12 7G 1 1/4 2 3/4 4 1/4 3 1/4 14 17/32 1 1/16 1/2 1 1/16 12 26 118 INTERMEDIATE 7G 1 1/2 2 3/4 3 1/4 14 17/32 1 1/16 1/2 1 1/16 12 26 4 1/4 1155 7G 14 17/32 2 2 3/4 3 1/4 1 1/16 1 1/16 4 1/4 5/8 12 26 118 8H 2 3 4 1/2 3 15/16 16 15/32 1 9/32 5/8 1 5/32 12 40 182 418 8H 16 15/32 1 9/32 1 5/32 2 1/2 3 4 1/2 3 15/16 5/8 12 40 20 100 118 16 182 10K 3 5 6 4 7/8 21 3/16 1 7/8 5/8 1 11/16 18 86 80 152 390 21 3/16 10K 4 4 7/8 17/8 1 11/16 86 5 5/8 18 6 124 48 43 390 5E 1/2 2 5/16 4 2 5/16 10 7/32 11/16 1/2 5/8 13 8 5E 3/4 2 5/16 4 2 5/16 10 7/32 11/16 1/25/8 8 13 200 59 NOMINAL 5E 2 5/16 2 5/16 10 7/32 11/16 4 1/2 5/8 8 13 1 59 100 1500 7G 1 2 3/4 4 1/4 3 1/4 14 17/32 $1 \frac{1}{16}$ 1/21 1/16 12 26 108 88 7G 1 1/4 2 3/4 4 1/4 3 1/4 14 17/32 1 1/16 1/2 1 1/16 12 26 118 340 INTERMEDIATE 7G 14 17/32 1 1/2 2 3/4 4 1/4 3 1/4 1 1/16 1/2 1 1/16 12 26 118 2155 7G 2 2 3/4 4 1/4 3 1/4 14 17/32 1 1/16 5/8 1 1/16 12 26 118 8H 3 15/16 16 15/32 1 9/32 1 5/32 2 3 4 1/2 5/8 12 40 /12 8H 2 1/2 3 4 1/2 3 15/16 16 15/32 1 9/32 5/8 1 5/32 12 40 114 10K 3 5 4 7/8 21 3/16 17/8 5/8 1 11/16 18 86 6 10K 4 7/8 21 3/16 17/8 1 11/16 4 5 6 5/8 18 86 125 538 18 43 390 124 450 5E 1/2 2 5/16 4 2 5/16 10 7/32 11/16 1/2 5/8 13 8 5E 3/4 2 5/16 4 2 5/16 10 7/32 11/16 1/2 5/8 13 8 100 NOMINAL 5E 2 5/16 2 5/16 10 7/32 11/16 1 4 1/2 5/8 8 13 100 59 2550 7G 1 2 3/4 4 1/4 3 1/4 14 17/32 1 1/16 1/2 1 1/16 12 26 108 340 118 7G 1 1/4 2 3/4 4 1/4 3 1/4 14 17/32 1 1/16 1/2 1 1/16 12 26 118 INTERMEDIATE 7G 1 1/2 2 3/4 4 1/4 3 1/4 14 17/32 1 1/16 1/2 1 1/16 12 26 118 3045 7G 2 2 3/4 4 1/4 3 1/4 14 17/32 1 1/16 1 1/16 5/8 12 26 340 118 8H 2 3 4 1/2 3 15/16 16 15/32 1 9/32 5/8 1 5/32 12 40 80 182 114 8H 2 1/2 3 4 1/2 3 15/16 16 15/32 1 9/32 5/8 1 5/32 12 40 182 14 10K 3 5 6 4 7/8 21 3/16 1 7/8 5/8 1 11/16 18 86 80 390 10K 4 4 7/8 21 3/16 1 7/8 5/8 1 11/16 86 5 6 18 100 152 124 16 450 390 538 48 43

* Socket Weld dimensions shown; Consult factory for Butt Weld dimensions. Numbers shown in Black indicate dimensions in inches, weight in pounds. Numbers shown in blue indicate dimensions in mm, weights in kingenement.


weights in kilograms. Butt Weld dimensions determined by pipe schedule.

DIMENSIONS

NOTE: All weights are approximate for shipping purposes only.

A105, and SA 182 F316 and F22 Material combinations available upon request.

*For over 2" size valves.

SPECIFICATIONS

Cv/Kv Size Standard Orifice Size																							
Code	Pipe	Size	1/8 3.2	3/16 4.8	1/4 6.4	5/16 7.9	3/8 9.5	7/16 11.1	1/2 12.7	9/16 14.3	5/8 15.9	11/16 17.5	3/4 19.1	13/16 20.6	7/8 22.2	15/16 23.8	1 25.4	1 1/16 27.0	1 1/8 28.6	1 3/16 30.2		1 3/8 34.9	1 1/2 38.1
5E	1/2 3/4 1	15 20 25	0.42 0.36	1.1 1.0	2.4 2.0																		
7G	1 1 1/4 1 1/2 2	25 32 40 50	0.5 0.4	1.1 1.0	2.1 1.8	3 3	5 4	7 6	9 8	11 10													
8H	1 1/4 1 1/2 2	32 40 50					5 4	6 5	8 7	10 9	13 11	15 13	18 16										
10K	2 2 1/2 3 4	50 65 80 100								13 11	16 14	19 16	22 19	25 22	28 24	31 27	35 30	38 33	42 36	46 40	49 42	59 51	64 55

Numbers shown in black indicate dimensions in inches/Cv. Numbers shown in blue indicate dimensions in mm/Kv.

Example:

Given:

Steam

P1 = 1000 (psi) Super heat = 105(F deg) P2 = 800 (psi) T = 650 (deg.F)Flow Rate = 20,000 (lbs/hr)

1000

800

600

500

400

300 200

60

60

50 40

30

20

10 8

÷

2 5

2

10

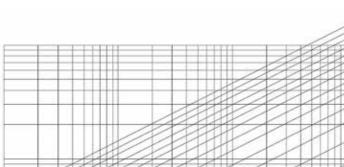
20 30 40 50 75 300

HOUK I 160 ŧ,

POM05

HOUSANDS OF

-YILDINGS


1) Calculate outlet pressure as % of inlet pressure

> Since outlet pressure is greater than 55% of inlet <u>P2</u> = 0.8 pressure, we must multiply P1 capacity by the correction factor. From the curve, the correction factor = .85.

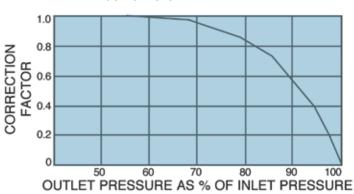
.85 (20,000) = 17,000 (lbs/hr)

- 2) If steam is super heated, adjust capacity. For 105 (F deg) Super Heated Steam: Capacity = 17,000 [1 + .00065(105)] =18,160 (lbs/hr)
- 3) Size Orifice from chart above using: Inlet Pressure = 1,000 (psi) Flow Rate = 18,160 (lbs/hr)

Find the intersection point on chart. Correct orifice size is directly above and to the left of the intersection point. In this case we would use an 11/16" orifice. Adjust for superheat conditions by multiplying the required flow rate by (1 + .00065 x degrees superheat)prior to cross referencing.

300 600

PRESSURE DROP (SSI)


200

2000

1000

5000

10,000

If outlet pressure is greater than 55% of the inlet pressure, multiply capacity by the correction factor below:

Saturated Steam

105 5128

5/16 7.08

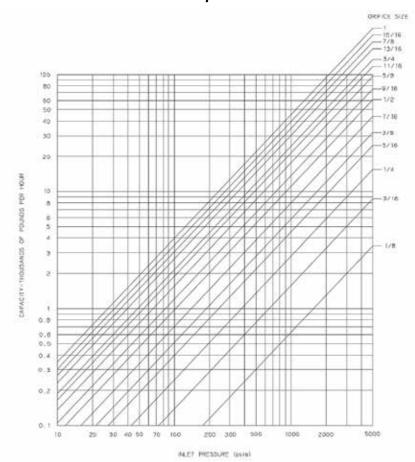
A16

9718

1/2

Example:

Given:

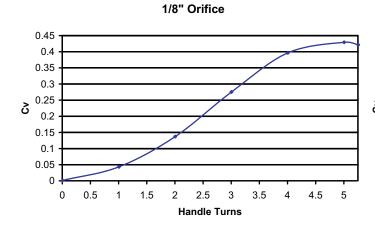

Water P1 = 1000 (psi) $\triangle P = 1000$ (psi) T = 350 (deg.F) Flow Rate = 10,000 (lbs/hr) Vapor Pressure = 135 (psi)

- 1) Since T>300, we must use a corrected max. pressure drop.
 - $\triangle P = .9 x (1000 .83 x 135)$ $\triangle P = 799.155$
- 2) Size orifice from chart using:

 $\triangle P = 799.155$

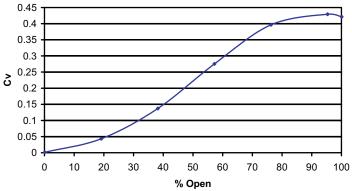
Flow Rate = 10,000

Find the intersection point on the chart. Correct orifice size is directly above and to the left of the intersection point. In this case we would use a 3/16" orifice.



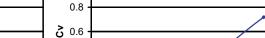
Correction Factor

If temperature is greater than 300°F chocked flow may occur. Therefore the maximum pressure drop used for sizing is given by:


P = .9 (P1 - .83 x Pv)

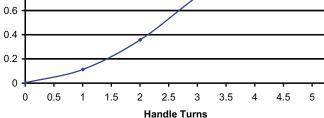
Where P1 = inlet pressure Pv = vapor pressure Liquid

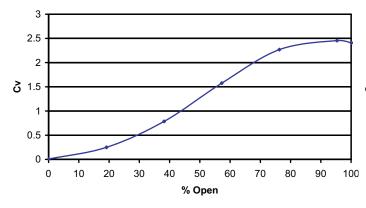
Cv vs Handle Turns for a 5E Throttle Valve with



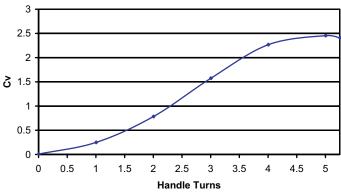
Cv vs Handle Turns for a 5E Throttle Valve with

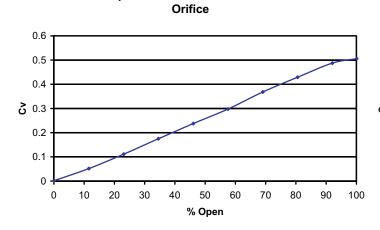
3/16" Orifice

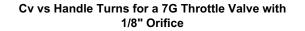

Cv vs % Open for a 5E Throttle Valve with 3/16" Orifice

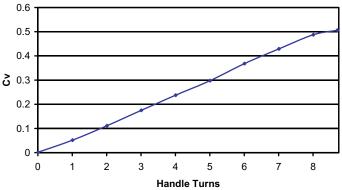


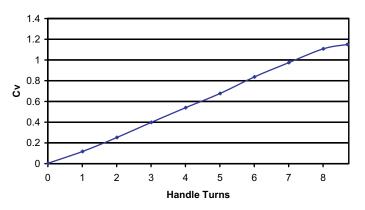
1.2


1

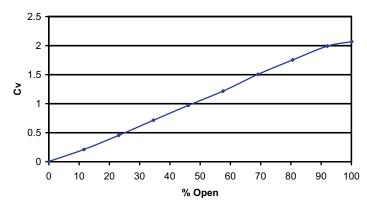


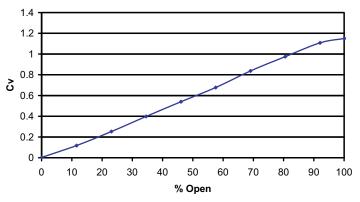


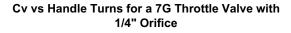


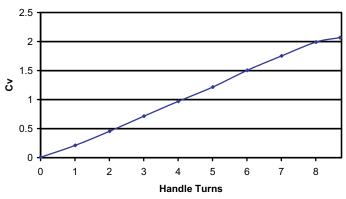


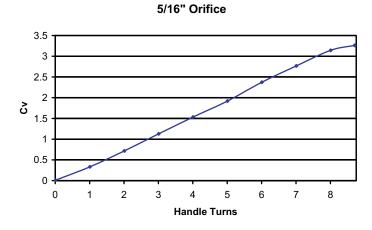
Cv vs % Open for a 7G Throttle Valve with 1/8"



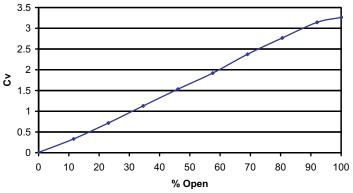

Cv vs Handle Turns for a 7G Throttle Valve with 3/16" Orifice

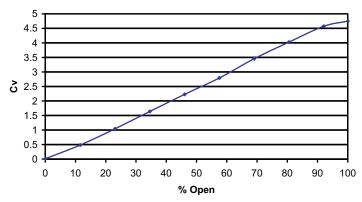




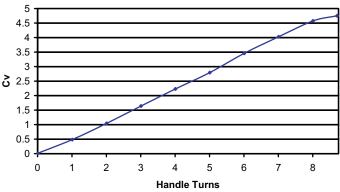


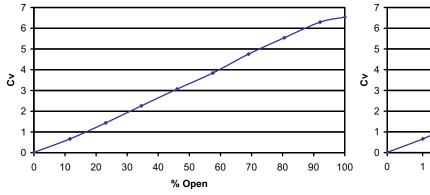
Cv vs % Open for a 7G Throttle Valve with 3/16" Orifice

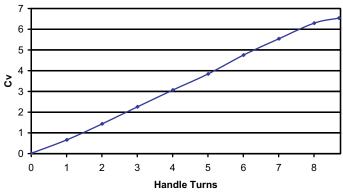


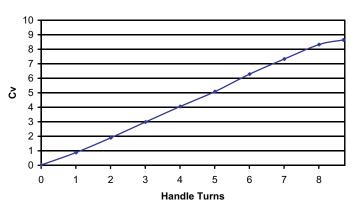


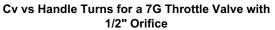
Cv vs Handle Turns for a 7G Throttle Valve with

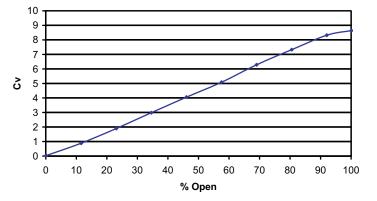


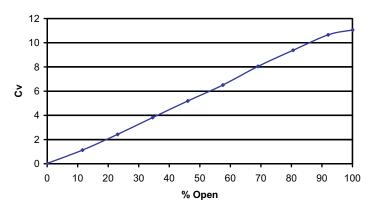

Cv vs % Open for a 7G Throttle Valve with 3/8" Orifice

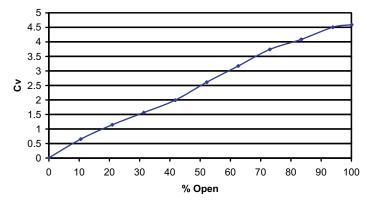

Cv vs Handle Turns for a 7G Throttle Valve with 3/8" Orifice

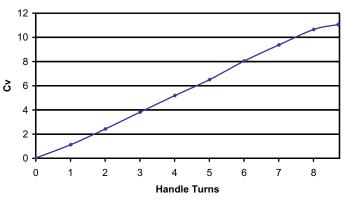


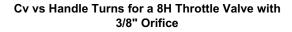


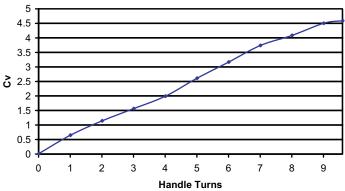

Cv vs Handle Turns for a 7G Throttle Valve with 7/16" Orifice

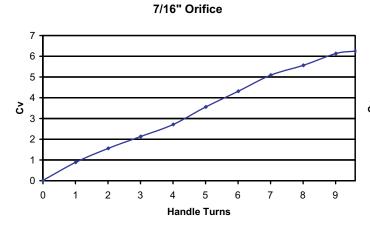



Cv vs % Open for a 7G Throttle Valve with 1/2" Orifice

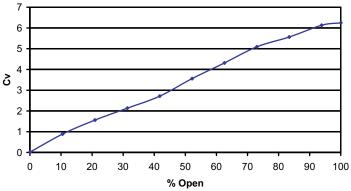

Cv vs % Open for a 7G Throttle Valve with 9/16" Orifice

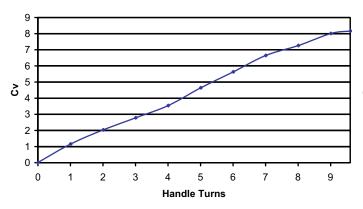




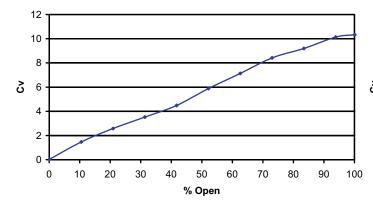


Cv vs Handle Turns for a 7G Throttle Valve with 9/16" Orifice

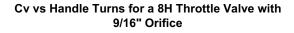


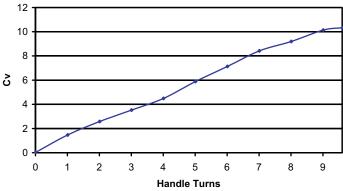


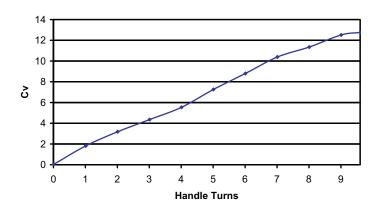
Cv vs Handle Turns for a 8H Throttle Valve with

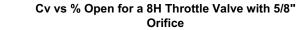


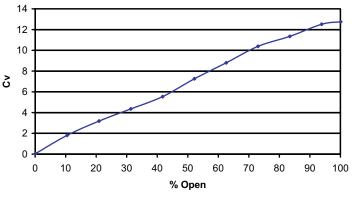
Cv vs Handle Turns for a 8H Throttle Valve with 1/2" Orifice

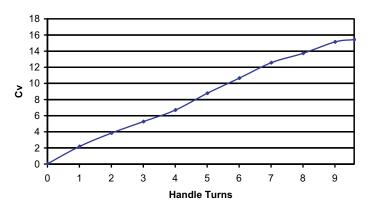


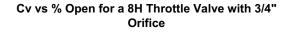

Cv vs % Open for a 8H Throttle Valve with 9/16" Orifice

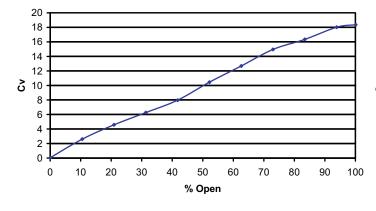

Cv vs % Open for a 8H Throttle Valve with 1/2" Orifice

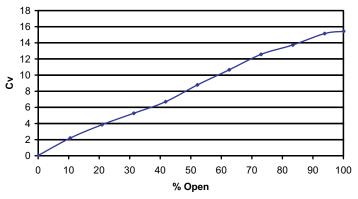



11

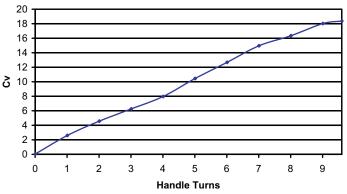

Cv vs Handle Turns for a 8H Throttle Valve with

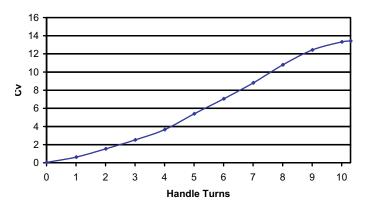

5/8" Orifice



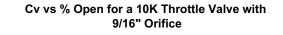

Cv vs Handle Turns for a 8H Throttle Valve with 11/16" Orifice

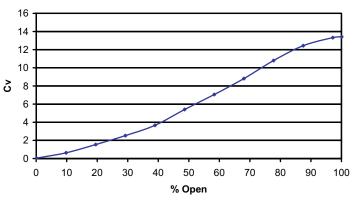


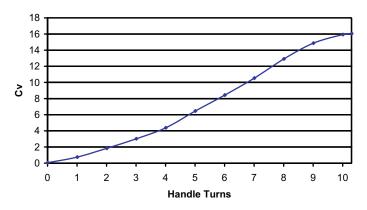




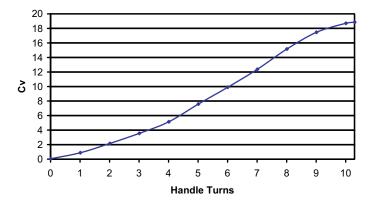
Cv vs % Open for a 8H Throttle Valve with 11/16" Orifice

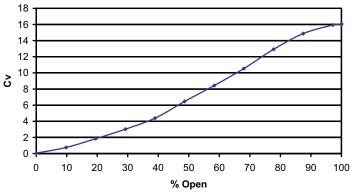


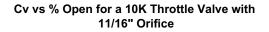


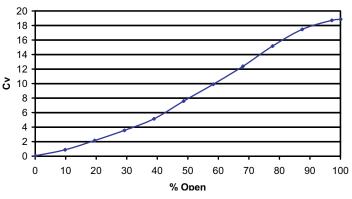


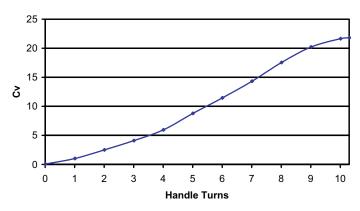
Cv vs Handle Turns for a 10K Throttle Valve with 9/16" Orifice

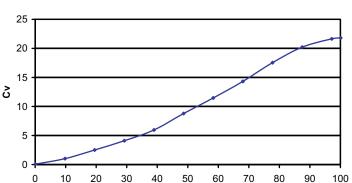



Cv vs Handle Turns for a 10K Throttle Valve with 5/8" Orifice

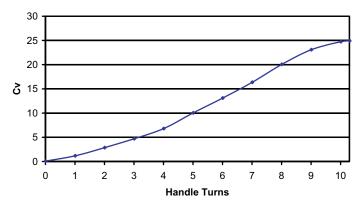


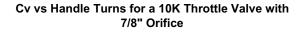

Cv vs Handle Turns for a 10K Throttle Valve with 11/16" Orifice

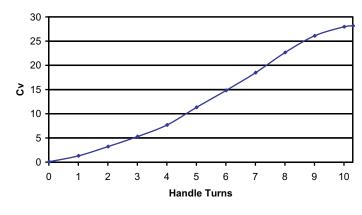

Cv vs % Open for a 10K Throttle Valve with 5/8" Orifice

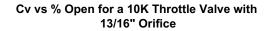


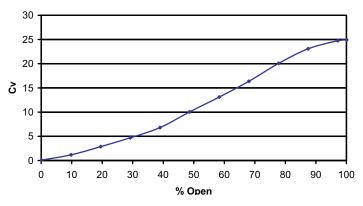
13

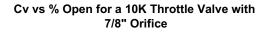


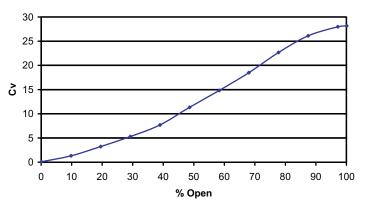

Cv vs Handle Turns for a 10K Throttle Valve with 3/4" Orifice

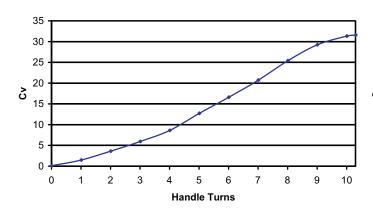



Cv vs % Open for a 10K Throttle Valve with 3/4" Orifice

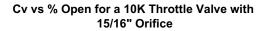


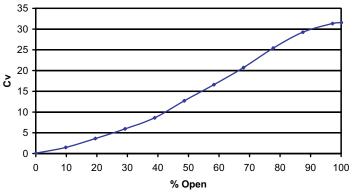


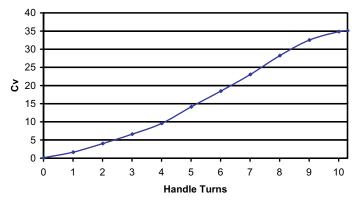




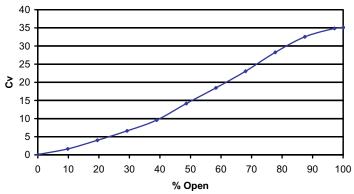
% Open






Cv vs Handle Turns for a 10K Throttle Valve with

15/16" Orifice



Cv vs Handle Turns for a 10K Throttle Valve with 1" Orifice

The Conval Story

In 1962, Mr. Chester Siver completed designs for a revolutionary line of high-pressure, forged steel valves. Hamilton Standard (now Hamilton Sunstrand), a division of United Technologies Corporation, was asked to use their then-new Electron Beam Welding technology for joining of parts into valves for subassemblies. Hamilton Standard became intrigued with the valve as an ideal application of the Electron Beam Welding technique, and negotiated a contract for the rights to manufacture and sell the valve. Mr. Siver served as manager of the valve project.

The first CLAMPSEAL® valves were introduced to the market by Hamilton Standard in 1964. However, in the mid-1960's, growing demand for the firm's popular aerospace products forced Hamilton Standard to make the decision to abandon its industrial products projects. The rights to the CLAMPSEAL valve reverted back to Mr. Siver. Since CLAMPSEAL valves were born in Connecticut, Mr. Siver founded "Conval" (short for Connecticut Valve) in 1967. Today, the valves are still manufactured in Connecticut, a state with a longstanding reputation for technological innovation and manufacturing excellence.

Founded in 1967, Conval has grown into a leader in valves for the world's most demanding applications. We have a global team of experts to help to meet your most challenging needs. We invite you to contact us today.

High-pressure, high-temperature ball, bellows, bonnetless, check, gate, globe, throttling, and urea service valves for the world's most demanding applications.

Thank you for your business! ISO 9001 certified since 1992 PED certified since 2003 Nuclear N-stamp since 2006

World Headquarters: 96 Phoenix Avenue, Enfield, CT 06082 USA Phone (860) 749-0761 Fax (860) 763-3557 e-mail: sales@Conval.com www.Conval.com

Conval's policy is one of continuous development and improvement. Every effort is made to produce up-to-date literature but this catalog should not be regarded as an infallible guide to current specifications and does not form part of any contract. Conval reserves the right to make product improvements and changes without prior notice.